Field horsetail (*Equisetum arvense*) management with an herbicide layering strategy

Jichul Bae^{1*}, Nathan Young^{1,2} and Ryan Critchley¹

Agriculture and Agri-Food Canada, Agassiz, BC, Canada
 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
 * Principal Investigator: jichul.bae@agr.gc.ca | +1 (604) 796-6136

Pacific Northwest Cranberry Congress 2023 February 23-24, 2023

Field Horsetail (Equisetum arvense)

 One of the most troublesome creeping perennial weeds (CPW) in horticultural crop production in BC

Field Horsetail (Equisetum arvense)

- A 10 cm length of rhizome can produce a total of 64 m of rhizome in 1 year
- Potential to infest an area of 1 hectare within 6 years of introduction

Field horsetail in cranberry field

Challenge: CPW Management

- The majority of conventional herbicides registered for use are primarily useful for annual weed management.
- Seldom controlled by a single herbicide application due to deep and extensive root and shoot systems

Weed Management

- Development of weed management strategies
 - Life cycles of weeds
 - ✓ How they develop
 - ✓ How they reproduce

CPW – How they develop/reproduce

- Larger starting capital and longer growth period
 - Nutrient reserves in storage organs
 - Rhizomes, stolons, tubers, horizontal roots
 - Ability to regrow a new set of leaves and stems until the nutrient reserves run out

CPW Weed Management

- Forcing weeds to deplete their nutrient reserves
 - Killing storage organs
 - Forcing growth of leaves/stems without opportunity to photosynthesize and replenish nutrient reserves
 (Chicouene 2007; Melander et al. 2012)

 Herbicide layering strategy composed of post-harvest (POST-H), pre-emergence (PRE) and post-emergence (POST) herbicide applications

- Post-harvest herbicide (January-February)
 - Region with relatively mild winters (e.g., southern coast BC)
 - Little reported use in BC growers
 - Translocate carbohydrate reserves to the overwintering organs
 - Post-harvest herbicides are absorbed into the plants and translocate with the carbohydrates to the storage organs

- Post-harvest herbicide (January-February)
 - Damaging/killing overwintering storage organs
 - Prevent new spring growth
 - Residual effects that carry into spring

- Pre-emergence herbicide at lower label rate
 - Spring (pre-bud break)
 - Suppress any new growth from seedbank and delay/suppress the growth of established weeds

Post-emergence herbicides

- Spring and Summer (Bud break and Hook)
- Damage/kill perennial weed plants
- Prevent photosynthesizing and replenishing nutrient reserves

BCCMC Research (2021- Present)

Research Objectives

- To identify and evaluate an effective and safe herbicide layering strategy to manage persistent perennial weeds
- To establish the safety of the herbicide layering strategy for use in cranberry production in both crop tolerance and subsequent fruit residues.

Study site

- Cranberry farm in Pitt Meadows, BC
- Established (~ 6 years old) Mullica Queen®
- Field horsetail (Equisetum arvense)
 - Dominant species in all the experimental plots (70 to 90% density)

Herbicide types and application rates

Trade Name	Active Ingredient	Application rate	Surfactant (if needed)
Casoron G-4	Dichlobenil	4400 g ai ha ⁻¹	
Devrinol 2XT	Napropamide	4500 g ai ha ⁻¹	
Authority 480	Sulfentrazone	140.16 g ai ha ⁻¹	
Lontrel XC	Clopyralid	102 g ai ha ⁻¹	
Callisto 480SC	Mesotrione	100.8 g ai ha ⁻¹	Agral 90 (0.2% v/v.)
Poast Ultra	Sethoxydim	495 g ai ha ⁻¹	Merge (1L ha ⁻¹)

Timing of treatment applications

Phenological stage of cranberry

TDT# -					
TRT#	Post-harvest	Pre-bud break	Bud break	Hook	
1	-	Napropamide	Clopyralid	Mesotrione + Sethoxydim	
2	-	Napropamide	Mesotrione	Mesotrione + Sethoxydim	
3	-	Sulfentrazone	Clopyralid	Mesotrione + Sethoxydim	
4	-	Sulfentrazone	Mesotrione	Mesotrione + Sethoxydim	
5	Dichlobenil	-	Clopyralid	Mesotrione + Sethoxydim	
6	Dichlobenil	-	Mesotrione	Mesotrione + Sethoxydim	
7	Dichlobenil	Napropamide	Clopyralid	Mesotrione + Sethoxydim	
8	Dichlobenil	Napropamide	Mesotrione	Mesotrione + Sethoxydim	
9	Dichlobenil	Sulfentrazone	Clopyralid	Mesotrione + Sethoxydim	
10	Dichlobenil	Sulfentrazone	Mesotrione	Mesotrione + Sethoxydim	

Experiment Design

- Randomized complete block design with 4 replications
- Each plot is 4 x 2 m with 2 m untreated buffers on all sides
- Buffers used as weedy-check plots (vs. the adjacent treated plots)

Assessment

- Weed and crop assessment
 - Bi-weekly starting after 2nd POST application
 - Phytotoxicity 0% (no injury) to 100 % (complete crop loss)
 - Weed coverage (0-100%) of individual weed species

- Crop yield and safety
 - Yield all fruits harvest from two 0.25 m² quadrats
 - Subsample sent to laboratory for residue analysis

Timeline/Procedures

- POST-H: January 26, 2022 | January 26, 2023
- PRE: March 29, 2021 | March 31, 2022
- POST #1: April 20, 2021 | April 21, 2022
- POST #2: May 26, 2021 June 7, 2022

Napropamide PRE + POST

TDT# -	Phenological stage of cranberry			
TRT#	Post-harvest	Pre-bud break	Bud break	Hook
1	-	Napropamide	Clopyralid	Mesotrione + Sethoxydim
2	-	Napropamide	Mesotrione	Mesotrione + Sethoxydim

Poor field horsetail control (1 to 26% control)

TRT#	14 DAT (Late Jun)	28 DAT (Early Jul)	56 DAT (Early Aug)	Harvest (Late Sep)
1	6 ± 5% a	1 ± 1% a	26 ± 13% a	18 ± 11% a
2	13 ± 9% a	7 ± 7 % a	11 ± 7% a	17 ± 15% a

Sulfentrazone PRE + POST

TDT# :	Phenological stage of cranberry			
TRT#	Post-harvest	Pre-bud break	Bud break	Hook
3	-	Sulfentrazone	Clopyralid	Mesotrione + Sethoxydim
4	-	Sulfentrazone	Mesotrione	Mesotrione + Sethoxydim

Poor to fair field horsetail control (29 to 50% control)

TRT#	14 DAT (Late Jun)	28 DAT (Early Jul)	56 DAT (Early Aug)	Harvest (Late Sep)
3	45 ± 21% a	44 ± 20% a	38 ± 19% a	29 ± 23% a
4	50 ± 18% a	49 ± 12% a	47 ± 11% a	44 ± 6% a

■ POST-H + POST

TRT#	Phenological stage of cranberry			
IKI#	Post-harvest	Pre-bud break	Bud break	Hook
5	Dichlobenil	-	Clopyralid	Mesotrione + Sethoxydim
6	Dichlobenil	-	Mesotrione	Mesotrione + Sethoxydim

Excellent field horsetail control (>95% control)

TRT#	14 DAT (Late Jun)	28 DAT (Early Jul)	56 DAT (Early Aug)	Harvest (Late Sep)
5	97 ± 1% a	95 ± 2% a	95 ± 2% a	97 ± 1% a
6	97 ± 2% a	99 ± 1% a	97 ± 2% a	98 ± 1% a

■ POST-H + PRE + POST

	TDT# -	Phenological stage of cranberry			
TRT# -		Post-harvest	Pre-bud break	Bud break	Hook
	7	Dichlobenil	Napropamide	Clopyralid	Mesotrione + Sethoxydim
	8	Dichlobenil	Napropamide	Mesotrione	Mesotrione + Sethoxydim
	9	Dichlobenil	Sulfentrazone	Clopyralid	Mesotrione + Sethoxydim
	10	Dichlobenil	Sulfentrazone	Mesotrione	Mesotrione + Sethoxydim

- POST-H + PRE + POST
- Excellent field horsetail control (79 to 99% control)

TRT#	14 DAT (Late Jun)	28 DAT (Early Jul)	56 DAT (Early Aug)	Harvest (Late Sep)
7	98 ± 1% a	99 ± 1% a	95 ± 9% a	94 ± 5% a
8	99 ± 1% a	99 ± 1% a	90 ± 9% a	79 ± 18% a
9	98 ± 1% a	99 ± 1% a	97 ± 1% a	97 ± 1% a
10	98 ± 2% a	97 ± 1% a	97 ± 1% a	97 ± 2% a

- None of the active ingredients was detected from the residue analyses
- Yield was ranged from 50 to 260 g m⁻²
 - The treated plots had 25 to 390% higher yields than the nontreated control plots.
- Significant difference in yields among the treatments (p< 0.01)

Herbicide Layering	Yield	
PRE + POST	90 ± 9 g m ⁻²	
POST-H + POST	200 ± 8 g m ⁻²	133%
POST-H + PRE + POST	210 ± 1 g m ⁻²	

Discussion

 Excellent field horsetail control (>95% control) was maintained until the harvest when post-harvest application of dichlobenil was included in the herbicide layering

Discussion

 Pre-emergence herbicide application may not be necessary for field horsetail control when post-harvest of dichlobenil is included in the herbicide program

TRT#		Phenological	stage of cranbe	erry
IKI#	Post-harvest	Pre-bud break	Bud break	Hook
5	Dichlobenil	-	Clopyralid	Mesotrione + Sethoxydim
6	Dichlobenil	-	Mesotrione	Mesotrione + Sethoxydim
TRT	14 DAT (Late Jun	28 DAT (Early Jul)	56 DAT (Early Aug	Harvest (Late Sep)
5	97 ± 1%	a 95 ± 2% a	95 ± 2%	a 97 ± 1% a
6	97 ± 2%	a 99 ± 1% a	97 ± 2%	a 98 ± 1% a

Future study

 Whether the post-harvest application of dichlobenil can reduce or eliminate the need for post-emergence herbicides while providing excellent season-long field horsetail control

Phenological stage of cranberry

TRT#				
	Post-harvest	Pre-bud break	Bud break	Hook
7	Dichlobenil	Napropamide	Clopyralid	Mesotrione + Sethoxydim
8	Dichlobenil	Napropamide	Mesotrione	Mesotrione + Sethoxydim
9	Dichlobenil	Sulfentrazone	Clopyralid	Mesotrione + Sethoxydim
10	Dichlobenil	Sulfentrazone	Mesotrione	Mesotrione + Sethoxydim

Thank you

jichul.bae@agr.gc.ca