ROOT DIEBACK

OXYGEN STARVATION?

FORMATION OF BOGS

HUMMOCKY SURFACE of BOG

O.M. DECOMPOSITION

The composition of organic matterdepends on the nature and abundance of microorganisms in soil, the C, N, P, K & moisture content of the soil and temperature, pH, aeration, C: N ratio of plant residues and presence/absence of inhibitory substances (e.g. tannins, pesticides).

ORGANISMS

- Bacteria -most abundant organisms & important role in decomposition of O.M.
- Majority of bacteria involved in decomposition of organic matter are heterotrophic (need Oxygen)
- Actinomycetes and fungi also play roles in the decomposition of organic matter.
- Soil algae contribute a small amount of organic matter – not active in decomposition.

AERATION

- Necessary for microorganisms involved in the decomposition of organic matter.
- Under anaerobic conditions fungi and actinomycetes are suppressed and only a few bacteria (Clostridium) take part in anaerobic decomposition.
- Anaerobic decomposition results into the production of organic acids and gases -> methane, hydrogen sulfide, & carbon dioxide

OXIDATION-REDUCTION (Eh)

Suff state		Redox potential (mV)			
Aerobic					
	Stabilized by oxygen	(800)600<=>400(300)			
	stabilized by nitrate	530<=>420			
	stabilized by manganese	640<=>410			
Anaerobic					
	stabilized by organic matter	200 <=> -40			
	stabilized by ferric ions	170 <=>-180			
	stabilized by sulphate	-70 <=>-220			
	stabilized by carbon dioxide	-120<=>-240			

IMPORTANCE OF C:N

- C: N controls rate of O.M. decomposition
- O.M. in plant-tissues varies widely in C: N ratio (40, 80:1).
- C: N ratio 20-25 is ideal (N limiting! = fertilizer),
- Low nitrogen content or wide C:N ratio = slow decomposition
- Aeration, narrow C: N ratio → optimal decomposition of organic matter (including pesticides).

POOR & GOOD AERATION

Richmond No. 7 Road

DIEBACK (left) HEALTHY (right)

SITE - No. 7 ROAD & RESEARCH SITE

Samples

- 1. Extensive dieback
- 2. Healthy, adjacent to dieback
- 3. Intermediate (or transition zone)
- 4. Healthy growth (younger plantation than samples 1-3)
- 5. Research plot, bare
- 6. Research plot, under production

RESULTS- Aug. 2014

San	nple		pH CaCl ₂	Eh H2O CaCl2 mv	H ₂ O		Organic Matter	NH ₄		Porosity
1		4.9	3.5	176 27 0	83	0.75	62	0.96	18	48
2	2.	5.7	4.7	130 202	58	0.22	77	0.81	0.25	82
3	3.	5.3	3.9	168 263	65	0.29	72	1.3	1.7	76
4	١.	3.9	2.4	256 <mark>332</mark>	49	0.11	92	0.4	0.3	90
5	5.	4.2	2.7	227 320	26	nd	94	0.7	0.05	-
6	ó.	4.2	2.6	234 321	25	nd	96	0.3	0.2	-

PRELIMINARY ASSESSMENT

- Management regimes lower the water table, oxidation of the original peat soil leads to O.M. decomposition,
- Decrease O.M.--> increase in finer particles → higher water holding capacity & lowers porosity,
- Decreases O₂ and CO₂ diffusion and exchange at the root-soil interface,
- Oxygen availability decreased (lower Eh) → anaerobic soil-root environment,
- Eh values of < 175, water/270, CaCl₂, anaerobic (lack of O_2).
- Plus presence of NH₄, suggest roots in sample 1&2 deprived of oxygen to maintain the oxidizing environment

ROOT REDOX (Eh) and GROWTH

(from Pennington and Walters [28]).

REDOX AND PLANT GROWTH

Values are presented as percent of controls (from Pezeshki et al. [157])

Infra Red Photo of site

ANTONIA Please

NATURAL BOG

LAYERS IN PEAT BOG

RADAR IMAGERY- SOIL CONDITIONS

Ground Penetrating Radar responds to:

- Soil density (bulk density)
- Soil moisture
- Soil layering

X-SECTION -BOG

RADAR IMAGE

