Characterization of Cranberry Field Decline in British Columbia Cranberry Beds

BC Cranberry Congress Feb. 2, 2016

Rebecca Harbut, KPU
Les Lavkulich, UBC
Peter Oudemans, Rutgers

What is Cranberry Field Dec

Previous Efforts on CFD:

- Pest damage: Dr. Sheila Fitzpatrick, AAFC, Dr. Peter Oudemans, Rutgers
- Chemical residue analysis: Brian Mauza, OS
- Nematode analysis: Dr. Siva Sabaratnum, MOA
- Virus screening: Bob Martin, USDA-ARS

What's So Special About E

- BC is unique compared to other cranberry producing regions:
 - Production systems used
 - Climate
 - Soil conditions
 - Economics of the region
- Therefore, many of the challenges growers face are also unique.

The Project

- Characterize 6 cranberry beds with CFD affected and non-symptomatic areas to identify conditions associated with CFD
 - Soil characteristics
 - Chemistry
 - Physical properties
 - Plant characteristics
 - Canopy components and architecture
 - Rooting characteristics
- Use imagery to determine the spread and patterns associated with CFD
- Develop tools that may assist in assessing fields for risk factors associated with CFD
- Generate data to inform the development of management practices that can remediate beds affected by field decline and prevent development of CFD

Imagery

Area of Interest

2009 sat

2009 sat

Progress and Next Steps

- Various conditions lead to CFD
 - Irrigation pattern
 - Drainage pattern
 - Undetermined
- Fields exhibit distinct timing (not synchronous)
- NDVI shows changes over large areas
- Some beds remain healthy

- Compare history of study sights with imagery
- Utilize satellite imagery to compare using NDVI
- Quantify NDVI changes to establish temporal patterns

Plant and Soil Assessment

- Took 1meter soil cores throughout the study bed
- Photographed the core and measured the horizons
- Used Vanpost Scale to measure humification

Detailed soil core sampling Color assessment with Munsell color chart pH and organic contents test (UBC soil lab)

Humification Test

Soil Organic Matter (Rooting zone)

- On average, OM was lower in decline samples
- Values also influenced by presence of mineral soil layers (clay)
- Some sites showed high variability

Soil pH (Rooting zone)

- At some fields, pH was much higher in decline samples
- At other fields, pH was equal or lower in decline samples
- High pH variability between fields

REDOX POTENTIA

- Lower redox
 values in
 affected (decline)
 samples
- Preliminary soil
 data collected
 from Affected (A)
 and Non Symptomatic (NS)
 patches at Site 1.

A ample	REDOX	pH in	Ammonia	Nitrate	
Number	in water (mV)	water	(mg/kg)	(mg/kg)	
A1a	210	4.15	0.73	1.14	
A1b	211	4.20	0.70	1.26	
A2a	207	4.26	0.55	2.90	
A2b	205	4.28	0.40	2.70	
A3a	198	4.47	0.47	0.46	
A3b	198	4.44	0.52	0.47	
NS1a	203	4.42	0.18	0.12	
NS1b	201	4.39	0.15	0.13	
NS2a	211	4.24	-	-	
NS2b	212	4.20	0.13	0.12	
NS3a	227	3.90	0.14	0.13	
NS3b	229	3.94	0.18	0.13	

Site 2 - NS	Sample ID	Interval (cm)	pH in water	% OM	
	S2-H4-A	0-22	4.17	28.39	Sit No Co
A CONTRACTOR	S2-H4-B	22-26	4.25	18.12	•
	S2-H4-C	26-31	4.43	23.24	
	S2-H4-D	31-33	4.45	21.43	•
	S2-H4-E	33-51	4.50	22.63	

Site 2: Non-Symptomatic Core

- Dominated by peat
- More homogeneous soil conditions in rooting zone
- High OM content

Site 2 - A	Site 2 - A Sample ID		pH in water	% OM	
4 5 6 7 8 9 4 7 7 9 4 7 9 4 7 9 4 7 9 4 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	S2-A1-A	0-14	4.78	22.28	2.2
9 0 1 7 8 9 20 1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S2-A1-B	14-22	4.56	20.79	,
	n/s	22-23	n/s	n/s	
	S2-A1-C	23-32	4.55	23.19	
3 4 5 6 7 8	S2-A1-D	32-39	4.65	17.32	
40 7 2 3 4 5 6 7 8 9 50	S2-A1-E	39-51	4.75	17.97	

Site 2: Affected Core

- More layers
- Lower OM content near surface
- Higher pH

Site 4 - NS	Sample ID	Interval (cm)	pH in water	% OM
4 5 0 7 8 9	S4-H4-A		5.22	20.00
0.5(1.7)2.1 0.5(1.7)2.1	S4-H4-B	10-13	5.20	18.03
14 15 46 17 18 18 20 21 22 23 2	S4-H4-C	13-24	5.29	2.29
25 26 27	S4-H4-D	24-28	5.54	1.72
21 26 30 41 132 35 34 35 36 37 38 38 40	S4-H4-E	28-40	5.87	1.03
41 42 49 44 45 46 47 48 49 50 51 5	S4-H4-F	40-51	5.41	1.61
49.49.50.51.52.53				

Site 4: Non-Symptomatic Core

- Dominated by clay at depth
- Low OM content
- Higher pH

Site 4 - A	Sample ID	Interval (cm)	pH in water	% OM
4 5 6 7 8 9 10 1	S4-A2-A	0-11	5.23	19.60
12 13 14 15 46	S4-A2-B	11-16	4.93	14.52
17 18 16 20	S4-A2-C	16-20	5.23	14.21
20 20 20 20 20 20	S4-A2-D	20-26	5.06	12.71
27 28 29 30 31 3	S4-A2-E	26-32	5.11	10.50
2 33 34 35 36 37 38 30 40 41 4	S4-A2-F	32-42	5.18	12.64
8 de 45 de 47 de 49 80 51	S4-A2-G	42-51	5.69	13.00

Site 4: Affected Core

- Many layers
- Lower OM content near surface
- Clay layer at depth

• Higher average number of soil layers in the top 30 cm of affected (decline) samples

Affected Samples

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
Average layer number	3.33	4.33	5.33	5	3.33	6
Overall Average	4.56					

Non-Symptomatic Samples

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
Average layer number	3.6	4	4.2	4.2	2.8	5.8
Overall Average	4.1					

Some background theory...

WATER & AIR MOVEMENT 1) Small Pores over Large Pores

WATER & AIR MOVEMENT 2) Large Pores over Small Pores

RAIN (AIR) WILL ENTER THE SAND, WILL STOP
DOWNWARD MOVEMENT AND SLOWLY ENTER THE CLAY
OR THE "MUCK"

WATER (ENTRAPPED AIR, O₂) WILL MOVE INTO THE SAND ONLY BY THE WATER EVAPORATING AND THEN MOVES AS A GAS

REDOX (Reduction and Oxidation)

Two ways of thinking about redox reactions:

- 1. Reduction is the removal of oxygen from a substance, and
- 2. Oxidation is the **addition** of oxygen.

Reduction is the addition of electrons (e⁻)

$$2H^+ + O_2 + e^- \rightarrow H_20$$

Oxidation is the removal of electrons (e⁻)

$$H_20 - e^- \rightarrow 2H^+ + O^{2-}$$

WHY REDOX?

PHOTOSYNTHESIS is a redox reaction!

t H₂O

REDOX: One substance loses electron(s) and anot electron(s)

- Water (H₂0) reacts with Carbon Dioxide (CO₂) to form a Carbohydrate (sugar)
- A (+) charge is split from water: H_2O + energy \rightarrow H^+ + OH^- (oxidation)
- Energy from sunlight increases the energy of the electrons in the OH-
- Electrons are transferred from water to carbon dioxide → Sugar! (reduction)

RESPIRATION - ALSO REDOX

TWO KINDS OF RESPIRATION WITH ORGANIC COMPOUNDS*

Aerobic requires oxygen and releases lots of energy

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

• Anaerobic no oxygen but releases much less energy

*Examples are oxidation of glucose (simplest sugar).

Relationship between Soil Redox and Net Photosynthesis (e.g. Sedge)

DRAINAGE EFFECTS ON PHOTOSYTHESIS

OXYGEN CAUGHT IN SATURATED SOIL

Ground Penetrating Radar

SINGLE FIELD SCAN

Plant Analysis

Upright Count

Fig.1: Mean total upright count per ft² for each condition (A: affected, T: transition, N: non-symptomatic) at each study field (site 1 to 6). Error bars indicate standard error around the mean.

Growth Analysis Cores

Canopy Depth

Fig.2: Green canopy depth for each condition (A: affected, T: transition, N: non-symptomatic) at each study field (site 1 to 6). Error bars indicate standard error around the mean.

Fig.3: Brown canopy depth for each condition (A: affected, T: transition, N: non-symptomatic) at each study field (site 1 to 6). Error bars indicate standard error around the mean.

Growth Analysis

Fig. 4. dry weight of (a) shoot and (b) root for each condition (A: affected, T: transition, N: non-symptomatic) at each study field. Error bars indicate standard error around the mean.

Total Yield

Fig. 8. Mean and total yield per ft² for each condition at each study field. Error bars indicate standard error around the mean.

Components of a Resilient Cranberry Plant

- 1. Well established root system
 - Required for nutrient and water uptake
 - Early establishment

2. Healthy Brown Canopy

- Function: provides a carbohydrate reserve to the green canopy
 - Especially important in a climate where winter temperatures may not accommodate full dormancy continuous respiration
 - Provides 'buffer' when summer conditions are not ideal reduced water uptake = reduced nutrient uptake

3. Healthy Green Canopy

- Source of carbohydrates via photosynthesis
- Not always a good indicator the canopy health!

Summary

- Soil Characteristics of CFD areas:
 - Increased 'layering' of soil horizons
 - Higher rates of organic matter decomposition
 - Higher soil pH
 - Redox values < 250mv
- Plant Characteristics in CFD areas:
 - Reduced rooting
 - Reduced brown canopy depth and health
 - Increased variability in yield in the transition canopy, but sudden drop in affected area

Future Efforts...

- Evaluate the impact of soil amendments and management strategies
- Evaluate diagnostic tools
- Understanding impact of inputs on soil
- Examine the carbohydrate status of vines
- Examine the impact of soil moisture management (irrigation and drainage)

Acknowledgement

- Cranberry Growers!
- Funding
 - BCCMC
 - Ocean Spray
- KPU and UBC students

Funding for this project has been provided by Agriculture and Agri-Food Canada and the BC Ministry of Agriculture through the Canada-BC Agri-Innovation Program under Growing Forward 2, a federal-provincialterritorial initative. The program is delivered by the Investment Agriculture Foundation of BC

THE RESERVE PROFESSION REP.

