# Impact of pollinator gardens on wild bees and yield in cranberry



Christelle Guédot and Nolan Amon

**Department of Entomology** 





#### **Pollinators in cranberry**

- Bees are important pollinators in cranberry as they ensure fruit set and increase fruit yield
- 89% of WI cranberry growers use honeybees
- WI cranberry growers spend \$140-\$210 per acre each year on honeybee rentals for pollination services
- 182 wild bee species documented in cranberry (Gaines Day 2013)

#### **Promoting pollinators**

### Can we foster native wild bee communities on cranberry marshes by implementing pollinator gardens?



Fig. 1. The effects of field edge pollinator plantings on overall pollinator abundance and richness, Bombus abundance and richness, and solitary bee abundance and richness in field edges. Mean effect sizes (Hedge's d)  $\pm$  95 % CI are illustrated. Double asterisks denote significance at  $\alpha$  < 0.001.



Fig. 2. Effects of field-edge pollinator plantings on pollinator abundance and richness in crop fields (ES provision) and crop yields (ES delivery). Mean effect sizes (Hedge's d)  $\pm$  95 % CI are illustrated. No groups were significant at  $\alpha$  < 0.05.



Fig. 3. Relationship between planting maturity and a) pollinator abundance and b) pollinator richness for studies included in meta-regressions. Point size = 1/vai Year 0 represents the year plantings were established.

Lowe et al 2021 AEE 310: 109290

#### **Objectives**

Objective 1: Assess impact of pollinator gardens on

- 1) wild bee richness
- 2) wild bee abundance
- 3) wild bee visitation to cranberry flowers



Objective 2: Assess impact of wild bee richness and abundance and honey bee abundance on yield (berry size and number of berries)







#### Study design



#### Bee species richness over time

Number of species increased every year Over 180 bee species documented with several new state records

| The United   |      | 10000 | 10.00 |      |           |
|--------------|------|-------|-------|------|-----------|
| Family       | 2018 | 2019  | 2020  | 2021 | # Species |
| Andrenidae   | 5    | 19    | 21    | 25   | 31        |
| Apidae       | 13   | 22    | 31    | 35   | 45        |
| Colletidae   | 0    | 3     | 3     | 3    | 6         |
| Halictidae   | 31   | 44    | 46    | 61   | 74        |
| Megachilidae | 5    | 14    | 16    | 21   | 25        |
| Melittidae   | 0    | 0     | 1     | 1    | 2         |
| Total        | 54   | 102   | 118   | 146  | 183       |



Andrenidae: Mining bees



Colletidae: Polyester bees



Halictidae: Sweat bees



Megachilidae: Leafcutter bees



Dick Belgers, Waarneming.nl, https://commons.wikimedia.org/w/ind ex.php?curid=20662093

Mellitidae

#### Bee species abundance over time

Number of individual bees increased every year to perhaps plateau

|              |      |      | A LINESCO |      |             |
|--------------|------|------|-----------|------|-------------|
|              |      |      |           |      | #           |
| Family       | 2018 | 2019 | 2020      | 2021 | Individuals |
| Andrenidae   | 6    | 72   | 170       | 216  | 464         |
| Apidae       | 85   | 316  | 633       | 713  | 1747        |
| Colletidae   | 0    | 3    | 10        | 22   | 35          |
| Halictidae   | 261  | 1432 | 2497      | 2523 | 6713        |
| Megachilidae | 15   | 93   | 131       | 185  | 424         |
| Melittidae   | 0    | 0    | 4         | 2    | 6           |
| Total        | 367  | 1916 | 3445      | 3661 | 9389        |









USDA ARS, Wikimedia Commons Apidae

Colletidae: Polyester bees



Halictidae: Sweat bees



Megachilidae: Leafcutter bees



Dick Belgers, Waarneming.nl, https://commons.wikimedia.org/w/ind ex.php?curid=20662093

Mellitidae

#### Obj 1.1: Wild bee richness in relation to bloom

Pollinator gardens increase wild bee richness, regardless of whether or not cranberry is blooming, with greater richness outside of cranberry bloom compared to during bloom



Treatment: F(1,70) = 8.06; P = 0.0046Bloom F(1,1718) = 199.12;  $P < 2x10^{-16}$ 

### Obj 1.1: Wild bee richness in relation to sampling location

Pollinator gardens increase wild bee richness within cranberry and on marsh edge, with higher richness on marsh edge



Treatment: F(1,70) = 8.06; P = 0.0045Bloom F(1,1718) = 199.12;  $P < 2x10^{-16}$ 

#### Obj 1.2: Wild bee abundance in relation to bloom

Pollinator gardens did not increase wild bee abundance, but higher wild bee abundance outside of cranberry bloom compared to during cranberry bloom



Treatment: F(1,38) = 0.64; P = 0.43Bloom F(1,17684) = 130.06;  $P < 2x10^{-16}$ 

## Obj 1.2: Wild bee abundance in relation to sampling location

Pollinator gardens did not increase wild bee abundance, but wild bee abundance was higher on marsh edge compared to cranberry



Treatment: F(1,38) = 0.67; P = 0.41Bloom F(1,11930) = 212.8;  $P < 2x10^{-16}$ 

#### Obj 1.3: Bee visitation to cranberry flowers

Honey bees visit cranberry flowers more frequently than wild bees No impact of pollinator gardens on honey bee visitation to cranberry flowers

Wild bees visited more often cranberry flowers near control plots than garden plots



Bee type: P< 2.2x10<sup>-16</sup>

Treatment: P = 0.59

Bee type\*treatment: P = 0.018

#### 2.1: Wild bee richness and berry weight

Increasing wild bee richness during bloom correlated with increasing berry weight

No impact of honey bees on berry weight



Richness: p = 0.0002

#### 2.1: Wild bee abundance and berry weight

Increasing wild bee abundance during bloom is correlated with increasing berry weight

No impact of honey bees on berry weight



Abundance: p = 0.003

#### 2.2: Wild bee richness and number of berries

No impact of wild bee richness on number of berries Marginal impact of honey bee abundance on number of berries



Richness: p = 0.26

#### 2.2: Wild bee abundance and number of berries

No impact of wild bee abundance on number of berries

Marginal impact of honey bee abundance on number of berries



Abundance: p = 0.45

#### 2.3: Honey bee abundance and number of berries

Honey bee abundance positively correlated with number of berries



Honey bee abundance: p = 0.019

#### **Summary**

- Increases in wild bee richness and abundance over time
- Pollinator gardens led to increase in wild bee richness inside and on marsh edges of cranberry but not in wild bee abundance
- Honey bees visit cranberry flowers more often than wild bees, not surprising considering >89% WI growers rent honey bees
- Wild bees visited cranberry flowers more often in control than garden plots, could be drawn away from cranberry by gardens?





richness in field edges. Mean effect sizes (Hedge's d)  $\pm$  95 % CI are illustrated. Double asterisks denote significance at  $\alpha$  < 0.001.

#### **Summary and Conclusions**

 Wild bee richness and abundance both correlated with berry weight but not with number of berries

Honey bee abundance positively correlated with number of berries

but not berry weight



**Fig. 2.** Effects of field-edge pollinator plantings on pollinator abundance and richness in crop fields (ES provision) and crop yields (ES delivery). Mean effect sizes (Hedge's d)  $\pm$  95 % CI are illustrated. No groups were significant at  $\alpha$  < 0.05.

Wild bees may visit fewer flowers but deposit more pollen Honey bees may visit more flowers but deposit less pollen Wild bees and honey bees could provide complementary pollination services

#### **Acknowledgements**

#### **Funding Sources:**

- Wisconsin Cranberry Board Inc.
- Cranberry Institute
- WI DATCP

Grower collaborators: Thank you

Technical help: Abby Lois, Robin

Alcorta, Mary Powley

Bee taxonomy: Sam Droege, USGS

Statistical help: Maria Kamenetsky





